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Outline

e Continuous manufacturing (CM) of drug substances and
drug products

* Process modeling and simulation (M&S) for CM at FDA
* CM research highlights
* Opportunities of CM for generic drug products
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CM of Drug Substance and Drug Product FDA

Synthesis Crystallization Blending Granulation Tablet Press
N N
Sensors (PAT) and Active Process \/
Control Test & Tablet
Benefits:

* Reduced environmental footprint
* Improved efficiency

* Enhanced product quality

e Faster time-to-market
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Regulatory Considerations on CM
* Characterization of process dynamics for critical steps and integrated system
— Residence time distribution for a proposed mass flow rate
— Understanding of the system response to transient disturbances

Evaluation of the proposed attributes and specifications of raw materials
— Impact of variations in material properties on the performance of CM and
product quality

*  Process monitoring and control strategy

— Monitor and detect transient disturbances and process deviation

— Frequency of PAT measurements

— Active process controls

Material collection and diversion
— Start up and shutdown
— Strategy to identify, isolate and
divert non-conforming materials

Real-time release testing
— PAT tools for assay and content uniformity

— Dissolution models
www.fda.gov
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Modeling and Simulation (M&S) at FDA
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https://www.fda.gov/science-research/about-science-research-fda/modeling-simulation-fda

Process M&S for CM at FDA FDA

* Development and assessment of process models by OPQ is not unprecedented but the frequency,
types of models, and applications are evolving

* Advanced manufacturing a potential driving force for utilization of process modeling
o Inherently data rich processes
o Availability of plant wide information systems
o Implementation of advanced control strategy approaches (MPC, RtR, etc.)
*  Office of Pharmaceutical Quality (OPQ) has developed internal process M&S capabilities:
= Continuous API synthesis and crystallization
= Continuous drug product manufacturing

* FDA has established multiple external collaboration in the area of process M&S (e.g., RCPE,
Siemens, Rutgers, Purdue, MIT)

www.fda.gov 6



Regulatory Guidances for Establishing and Assessing FOA

Model Credibility
ICH Points to Consider Document ASME V&V 40

o ASME V&V 40-2018
YCicH e

Assessing Credibility

ICH Quanrty InpLEMENTATION WORKING GROUP Of com.pUtational
PoINTS 10 CoNsIDER (R2) MOdellng Through
ICH-Endorsed Guide for Veriﬂcation and
ICH Q3/QWQI0 Implementation validation: Application
Document date: § December 2011 to Medlcal DeV|ces
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ASME V&YV 40 Risk-Informed Credibility Assessment

Establish Risk-Informed Credibility V&V Activities
Define Asaiss Establieh Establish Exscute
¥ Model ¥

YES | Documentation
cou Credibiity V&V Plan V&V Plan | and Evidence
Risk Goals

* The question of interest describes the specific question, decision or concern that
is being addressed

Assess Credibility

CME&S
Credible for
cou?

Question of
Interest

NO

* Context of use (COU) defines the specific role and scope of the model used to
inform that decision

* Model risk is the possibility that the model may lead to a false/incorrect
conclusion, resulting in adverse outcomes

* Model credibility refers to the trust in the predictive capability of the model for
the COU

www.fda.gov 8



Model Credibility Factors FDA

Credibility Factors

Model credibility can be established through Venification Validation Applicability
the collection of V&V evidence and by Code | Solution Model - | Comparator| .~ Outpu
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Lavel Description
1 Visual comparison concludes good agreement,
2 Comparison by measuring the difference between computational results and
experimental data. Differences are less than 20%.
3 Comparison by measuring the difference between computational results and
experimental data. Differences are less than 10%.
Bl Comparison with uncertainty estimated and incorporated from the comparator
or computational model, Differences between computational results and
oxperimental data are less than 5%, Includes consideration of some
uncertainty, but statistical distributions for uncertainty quantification are
unknown,
5 Comparison with uncertainties estimated and incorparated from both the
comparator and the computational model, including comparison error.
www.fda.gov Differences between computational results and experimental data are less 9

than 5%. Statistical distributions for uncertainty quantifications are known.



Case Study I: CM of Carbamazepine (CBZ2)

Developed an experimental platform and process models for continuous synthesis
of CBZ with on-line PAT tools for advanced process monitoring and control

CBZ

A0~ GO

Carbamoylatlon of Iminostilbene (ISB) to form

Carbamazepine (CBZ).

www.fda.gov https://doi.org/10.1039/D2RE00476C 10



Modelling the Continuous Synthesis Process for CBZ
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Modeling Process Disturbances

*« CBZHPLC
CBZ Raman
s COZ Motw!
* ISBHPLC

Concentration (mg/mL)

0 1 ..L' Y e

0 2 B 6 8 10
Time (hour)

Stepwise disturbance in ISB stock:
6 mg/ml to 2 mg/mL from hour 4 to hour 5
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Case Study Il: Continuous Powder Blending

*  Three loss-in-weight feeders
feed APl and excipients into a
continuous blender

— Blender contains configurable
shaft with 28 elements

* Nearinfrared (NIR) spectrometer
positioned below blender outlet

"°Wde.ww§

o FIow L
«  The effects of material - — LN /’
properties and process 2 ¥ e 2 " .,r‘- g r‘
parameters on the residence Ragal ' i |
time distribution (RTD) of API
was investigated

. A discrete element method
(DEM) blender model was
developed and validated using

. Blender _//
experimental data Y F
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Effect of Process Parameters on RTDs

Mean Residence Time:

o Increased with additional
mixing elements (MEs)

o Decreased with increasing
total throughput (TP) and
blender speed (Speed)

Mean Centered
Variance:

o Increased with increasing
blender speed

www.fda.gov
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Assessing RTDs in Continuous Powder Blending using DEM FDA

Initial state Steady state
Time: 05

EDEM EDEM

Videos are obtained from the simulation with 5%API, 15kg/hr, 300rpm, and 16M

www.fda.gov APl — dark magenta, MCC — dark cyan, lactose — dark grey 15



DEM Model Validation

Case 5: 10kg/h, 400rpm, 16M
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Effect of Throughput

 Mean residence time decreases linearly with increasing throughput

* Hold-up mass increases linearly with increasing throughput
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Case Study Ill: Quality Risk Assessment of Continuous DP A

Process

* Developed flowsheet process model for
a continuous direct compression (CDC) line

— Low dose formulation, excipient 1 and 2
compose over 90% of the formulation

* Performed sensitivity analysis in the risk
assessment

* |dentified potential process parameters and
material attributes that affect critical quality
attributes of the drug product
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https://doi.org/10.1016/j.compchemeng.2019.06.033
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Sensitivity Analysis of CDC Process
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Intensity plots representing steady-state Impact of simultaneous disturbance
sensitivity analyses that capture the effects in the flowrates of excipients 1 & 2
of input factors on the output responses on final product concentration

APl and excipients 1&2 density, and their flowrates are
www.fda.gov significant factors impacting drug product quality
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Case Study IV: Quality Risk Control of a Continuous DP
Process

Developed a RTD-based process
modeling framework for a CDC line
— Excipients 1 -4 compose over 65%
of the formulation

The effectiveness of in-process control (IPC)
strategies were evaluated

www.fda.gov
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Establishing IPC Limits for APl Loading

* Two worst-case scenarios are considered to evaluate proposed IPC limits
* APl feeder operates at its upper (Fig. a)/lower limit (Fig. b) and excipients
feeders operate at their lower (Fig. a)/upper limits (Fig. b)

130- o 13 (b) 105, @
21 3 8120 Wl e b=
-~ @ - / b @
o 2 - &
gn =2 i1 Q%
§" = o .
s g s :
Fd % P é’

o <]
) AP compeation Q@
T « ol = Excipient 1 compaaltion 2
o ~ =@ = Exciplont 2 compositicn =
= Exsiplont 3 oomposition ~
] e Exalghent & o poaition E'e:
=" 7 L g LG | 1 &
& 100 200 300 400 %00
Time (s)

* The feeder IPC limits are set conservatively as the corresponding peak
concentrations at the feed frame are within the feed frame IPC limits

Feeder IPC Limits Feed Frame IPC Limits

API +15% for 20 seconds 5%
Excipient1, 2 +20% for 30 seconds +5%

www.fda.gov Excipient 3,4 +30% for 40 seconds +10% 21



Opportunities of CM for Generic Drug Products

*  90% of medicines used by U.S. patients are generic, but no generic
medicines have been approved to use CM

latermational Journal of Pharmnceuties

involved in implementing CM includes complex drug products such| =% < -—
implants, long-acting microspheres, and liposomes

* One of the potential drivers motivating generic companies to be : FRRR i

* CM applicants had shorter times to approval and marketing
compared to batch applicants
* 3 months faster to approval (median)
* 4 months faster to marketing
e ~§171-537M in early revenue benefit

* No substantial regulatory barriers for CM related to:

*  Manufacturing process changes https://doi.org/10.1016/j.ijpharm.2022.121778
*  Pre-approval inspections

www.fda.gov 22



Concluding Thoughts

* Regulatory experience for advanced manufacturing is evolving
* Research Case Studies Support Regulatory Decision Making
o OPQ Science and Research

— Knowledge gained from the internal and sponsored research inform policy,
review, and inspection activities, ensuring that FDA regulatory policies reflect
state-of-the-art manufacturing science.

* Shared learning and open communication to accelerate adoption of emerging
technologies to advance product quality

www.fda.gov
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