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AI/ML is taking the world by storm!

Stanford HAI. 2023 AI Index Report: Measuring Trends in Artificial intelligence. Retrieved 4 April 2023.
2aiindex.stanford.edu/report/

https://aiindex.stanford.edu/report/


AI/ML Performance Evaluation
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If you don’t measure AI/ML device 
performance, you won’t know 
• How accurate, reliable, safe and 

effective it is,
• How to label it,
• How to improve it.



Learning Objectives

• Explain who we are at OSEL, DIDSR

• Describe regulatory science challenges and 
gaps in medical AI/ML

• Describe OSEL AI/ML research program 
activities to address these gaps
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Office of Science and 
Engineering Labs (OSEL)

Mission Statement
Accelerating patient access to 
innovation, safe and effective 

medical devices through best-in-
the-world regulatory science.
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What OSEL/DIDSR Does
• Division of Imaging, Diagnostics, 

and Software Reliability (DIDSR)

• Conduct regulatory science 
research for a variety of imaging, 
AI/ML, MXR, and diagnostic 
devices.

• Develop approaches for assessing 
imaging and big-data 
technologies.
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A Collaborative Approach to 
AI/ML-enabled devices at CDRH
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https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/news-events/fda-brief/fda-brief-fda-announces-participation-first-two-collaborative-communities-working-develop-solutions
https://www.fda.gov/news-events/fda-brief/fda-brief-fda-announces-participation-first-two-collaborative-communities-working-develop-solutions
https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/public-workshop-evolving-role-artificial-intelligence-radiological-imaging-02252020-02262020
https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/public-workshop-evolving-role-artificial-intelligence-radiological-imaging-02252020-02262020
https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/public-workshop-evolving-role-artificial-intelligence-radiological-imaging-02252020-02262020
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial


A Collaborative Approach to 
AI/ML-enabled devices at CDRH
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2021+: AI/ML Medical Device Software Action Plan www.fda.gov/media/145022/download

❑ Update the proposed 
AI/ML framework

❑ Strengthen FDA’s role 
in harmonizing GMLP

❑ Foster a patient-
centered approach

❑ Support development 
of regulatory science 
methods

❑ Advance real-world 
performance pilots
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https://www.fda.gov/media/145022/download
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/news-events/fda-brief/fda-brief-fda-announces-participation-first-two-collaborative-communities-working-develop-solutions
https://www.fda.gov/news-events/fda-brief/fda-brief-fda-announces-participation-first-two-collaborative-communities-working-develop-solutions
https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/public-workshop-evolving-role-artificial-intelligence-radiological-imaging-02252020-02262020
https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/public-workshop-evolving-role-artificial-intelligence-radiological-imaging-02252020-02262020
https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/public-workshop-evolving-role-artificial-intelligence-radiological-imaging-02252020-02262020
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial


What are some reasons to measure the 
performance of AI/ML-enabled medical devices?

1. Ensure that these systems are safe and effective

2. Characterize accuracy and precision, across a diverse patient population

3. Labeling

4. Understand how to improve the AI device

5. All of the above
9

Knowledge Check
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Knowledge Check

What are some reasons to measure the 
performance of AI/ML-enabled medical devices?

1. Ensure that these systems are safe and effective

2. Characterize accuracy and precision, across a diverse patient population

3. Labeling

4. Understand how to improve the AI device

5. All of the above



• AI/ML program 

– Regulatory science research 

– Developing robust AI/ML test methods 

– Evaluating methodologies for assessing AI/ML

• AI/ML team identified regulatory gaps

– Not all AI/ML knowledge gaps

– Important ones to support FDA regulatory mission

OSEL AI/ML Program
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• Limited labeled training and test data

• Bias, equity, and generalizability

• Ground truth and metrics for performance estimation

• Evolving algorithms – How to maintain safety and effectiveness 
for devices with a predetermined change control plan (PCCP)

• Emerging clinical application of AI/ML

• Data Drift and Postmarket AI/ML Performance Monitoring

Regulatory Science Gaps
and Challenges
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Regulatory Science Gaps
and Challenges



Limited labeled training and test data

• Need for:

– Fundamental understanding of limitations of smaller 
datasets; and 

– Novel techniques to enhance AI/ML algorithm 
training and testing when real-world datasets are 
limited in size

14



Use of synthetic data for AI training and testing
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• AI algorithms require large training data sets for high performance

• Limited annotated data sets for medical images

• In-silico images may help

Cha et al., “Evaluation of data augmentation via synthetic images for improved breast mass 
detection on mammograms using deep learning,” Journal of Medical Imaging 2020

Badano et al., JAMA Network Open 2018



REALYSM: Simulations-based testing 
for AI devices

16

Goal: Generate realistic simulated data 
where real patient examples are unavailable

(c) AI Evaluation

Model
Decision

(a) Data Simulation: Sample 
simulation parameters

+

Breast 
Phantom 

Generation

Image Generated Using 
Acquisition Simulation

Lesion 
Insertion

Training 
Data

Option 1: Generate 
Simulated Training 

Data

Option 2: 
External 

Training Data

(b) AI Model 

Sizikova et al. Fully-Detailed, 
Physics-based In Silico Approach for 
Evaluating … 2023 (in review)

Badano et al. The stochastic 
digital human ... ArXiv
preprint 2023.



• Limited labeled training and test data

• Bias, equity, and generalizability

• Ground truth and metrics for performance estimation

• Evolving algorithms – How to maintain safety and effectiveness 
for devices with a predetermined change control plan (PCCP)

• Emerging clinical application of AI/ML

• Data Drift and Postmarket AI/ML Performance Monitoring
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Regulatory Science Gaps
and Challenges



Bias, equity, and generalizability

• There is a need for methods to understand, 
analyze and minimize performance differences 
of AI/ML-enabled devices among subgroups 

18



Pediatric-Specific Evaluations for Deep Learning 
CT Image Reconstruction and Denoising

19

• Deep learning image reconstruction (DLIR) models primarily trained on adults.

• Do pediatric patients benefit equally from adult-trained DLIR models?

• PEDiatric CT Evaluation ToolKit (PED-ETK)
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Nelson et al. (2023) "Pediatric-Specific Evaluations for 
Deep Learning CT Image Reconstruction and 
Denoising Techniques" - under review github.com/DIDSR/PED-ETK

https://github.com/DIDSR/PED-ETK
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Nelson et al. (2023) "Pediatric-Specific Evaluations for 
Deep Learning CT Image Reconstruction and 
Denoising Techniques" - under review

Poor ability to generalize to pediatric 
patients of adult-trained DL image 

reconstruction algorithms. Proposed 
evaluation framework.

github.com/DIDSR/PED-ETK

Pediatric-Specific Evaluations for Deep Learning 
CT Image Reconstruction and Denoising

https://github.com/DIDSR/PED-ETK


• Limited labeled training and test data

• Bias, equity, and generalizability

• Ground truth and metrics for performance estimation

• Evolving algorithms – How to maintain safety and effectiveness 
for devices with a predetermined change control plan (PCCP)

• Emerging clinical application of AI/ML

• Data Drift and Postmarket AI/ML Performance Monitoring
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Regulatory Science Gaps
and Challenges



Ground truth and metrics for 
performance estimation

• A need to understand how to determine the level 
of truth needed to evaluate AI-enabled devices in a 
least burdensome fashion

• Metrics used to determine AI/ML performance

• Determination of acceptable performance criteria

22



23

MIDRC: Task-specific Performance Evaluation Metric 
Selection Tools for Machine Learning Algorithms

23
www.midrc.org/performance-metrics-decision-tree

Drukker et al., “The Medical Imaging and Data Resource 
Center (MIDRC) Technology Development Project (TDP) 
3c: Developing Tools to Assist in Task-specific 
Performance Evaluation for Machine Learning Algorithms 
Employing MIDRC Data,” AAPM 2022

https://www.midrc.org/performance-metrics-decision-tree
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• Emerging clinical application of AI/ML

• Data Drift and Postmarket AI/ML Performance Monitoring
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Regulatory Science Gaps
and Challenges



Evolving algorithms

• How to maintain safety and effectiveness for devices with a 
predetermined change control plan (PCCP)

• Our stakeholders would like a more flexible pre-market regulatory 
process to allow for periodic modifications of AI/ML algorithms over 
time and evolving AI algorithms without the need for a new regulatory 
submission.

• Many open questions related to the regulation of such devices.

25



Gossmann et al., “Test Data 
Reuse for the Evaluation …,” 
SIAM J Math Data Science, 
2021

26

Methods that allow for valid test data 
reuse restrict the amount of information 
leaked with each query by

(a) perturbing the query result with 
random noise → differential privacy

(b) restricting the number of bits of 
information returned.

How can we reuse an existing test dataset to validate 
sequential algorithmic modifications?



Gossmann et al., “Test Data 
Reuse for the Evaluation …,” 
SIAM J Math Data Science, 
2021

How can we reuse an existing test dataset to validate 
sequential algorithmic modifications?
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Methods that allow for valid test data 
reuse restrict the amount of information 
leaked with each query by

(a) perturbing the query result with 
random noise → differential privacy

(b) restricting the number of bits of 
information returned.

Accuracy of reported performance values 
improves at the cost of higher uncertainty



Feng et al., “Sequential 
algorithmic modification with 
test data reuse,” UAI, 2022

Methods that allow for valid test data 
reuse restrict the amount of information 
leaked with each query by

(a) perturbing the query result with 
random noise → differential privacy

(b) restricting the number of bits of 
information returned.

How can we reuse an existing test dataset to validate 
sequential algorithmic modifications?



Feng et al., “Sequential 
algorithmic modification with 
test data reuse,” UAI, 2022

Methods that allow for valid test data 
reuse restrict the amount of information 
leaked with each query by

(a) perturbing the query result with 
random noise → differential privacy

(b) restricting the number of bits of 
information returned.

Proposed method approves the most 
model updates and achieves the best 

performance, while controlling the 
rate of bad approvals.

How can we reuse an existing test dataset to validate 
sequential algorithmic modifications?



• Limited labeled training and test data

• Bias, equity, and generalizability

• Ground truth and metrics for performance estimation

• Evolving algorithms – How to maintain safety and effectiveness 
for devices with a predetermined change control plan (PCCP)

• Emerging clinical application of AI/ML

• Data Drift and Postmarket AI/ML Performance Monitoring

30

Regulatory Science Gaps
and Challenges



Emerging clinical application of AI/ML

• Device sponsors continue to think of new ways to utilize AI/ML in 
medical practice, including:
– Automating patient referrals,
– Triaging patients,
– Reading images autonomously,
– Large language models (LLMs) applied to medical records,
– Etc.

• We need methods for evaluating these new and different uses of AI

31



A Modeling Tool for Streamlined Assessment of 
Emerging Radiological Computer-Assisted Triage 

(CADt) and Notification Software

32

• 30+ FDA-approved CADt devices since 2018

• Why CADt devices? 

o Faster diagnosis and treatment for 

time sensitive diseases e.g. stroke

• How effective is a CADt device?

→ Use queueing theory to quantify the 

amount of time savings
Thompson et al., “Wait-Time-
Saving Analysis and …,” SPIE MI, 
2022
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Saving Analysis and …,” SPIE MI, 
2022
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Thompson et al., “Wait-Time-
Saving Analysis and …,” SPIE MI, 
2022

A Modeling Tool for Streamlined Assessment of 
Emerging Radiological Computer-Assisted Triage 

(CADt) and Notification Software

CADt most effective in a busy, short-staffed clinic
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• Ground truth and metrics for performance estimation
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• Emerging clinical application of AI/ML
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Regulatory Science Gaps
and Challenges



Data Drift and Postmarket AI/ML 
Performance Monitoring

• Data acquisition systems and protocols, and patient populations 
change over time and by site

• AI/ML device users, such as radiologists, and patients want to know 
that the AI products they are using will be accurate and reliable even 
as practice and patient populations change 

• We need planned and standardized methods for detecting changes to 
the inputs of AI devices, monitoring the accuracy of their outputs, and 
mitigating effects of those drifts

36



Online Recalibration
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• Model updates can protect against changes in the environment, and learn from 
accumulating data. 

• However, algorithmic modifications also carry the risk of deteriorating model 
performance.

• We design an online 
logistic recalibration and 
revision procedure that 
provides performance 
guarantees.

Feng et al., “Bayesian logistic 
regression for online recalibration 
and revision …,” JAMIA 2022.



Which of the following can be considered emerging 
applications of AI/ML in medical imaging?

1. Computer aided diagnosis or detection AI systems

2. Autonomous AI systems for patient referral

3. Systems for patient triage, rule-in, or rule-out

38

Knowledge Check



Which of the following can be considered emerging 
applications of AI/ML in medical imaging?

1. Computer aided diagnosis or detection AI systems 
(first CAD systems approved by FDA in 1990s)

2. Autonomous AI systems for patient referral

3. Systems for patient triage, rule-in, or rule-out
39

Knowledge Check



Putting Tools in 
Hands of Stakeholders

40



Regulatory Science Tools (RST)
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a defined 
Context of Use 
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Regulatory Science Tools (RST)
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AI/ML Relevant RSTs
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www.fda.gov/medical-devices/science-and-
research-medical-devices/catalog-regulatory-
science-tools-help-assess-new-medical-
devices

https://www.fda.gov/medical-devices/science-and-research-medical-devices/catalog-regulatory-science-tools-help-assess-new-medical-devices
https://www.fda.gov/medical-devices/science-and-research-medical-devices/catalog-regulatory-science-tools-help-assess-new-medical-devices
https://www.fda.gov/medical-devices/science-and-research-medical-devices/catalog-regulatory-science-tools-help-assess-new-medical-devices
https://www.fda.gov/medical-devices/science-and-research-medical-devices/catalog-regulatory-science-tools-help-assess-new-medical-devices


Regulatory Science Tools (RST)
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Medical Device Development Tools (MDDTs)
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www.fda.gov/regulatory-information/search-fda-guidance-
documents/qualification-medical-device-development-tools

http://www.fda.gov/regulatory-information/search-fda-guidance-documents/qualification-medical-device-development-tools
http://www.fda.gov/regulatory-information/search-fda-guidance-documents/qualification-medical-device-development-tools


• Active research from OSEL has been 

– Identifying and addressing critical gaps in device evaluation 
of medical AI/ML

– Putting methodology and tools into the hands of 
stakeholders

46

Summary



Acknowledgments

• I’d like to acknowledge Berkman Sahiner, 
Nicholas Petrick, Brandon Nelson, Elena 
Sizikova, Kenny Cha, and Elim Thompson for 
providing slides and information used this 
presentation.

47



Questions
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